Ollama Chat Endpoint
Overview
This endpoint provides access to Ollama's AI models for chat completion with streaming responses.
Request Details
HTTP Method
POST
Route
/api/ai/ollama/[model_name]/chat
Route Parameters
Parameter | Type | Required | Description |
---|---|---|---|
model_name | string | Yes | The name of the AI model |
Query Parameters
Parameter | Type | Required | Description |
---|---|---|---|
chat_id | integer | Yes | Unique identifier of the chat |
is_playground | boolean | No | Indicates if the conversation is temporary |
Headers
Header | Value | Required | Description |
---|---|---|---|
Content-Type | application/json | Yes | Indicates JSON request body |
Cookie | neptun-session | Yes | Session authentication cookie |
Request Body
The request body should contain the chat messages array.
Field | Type | Required | Description |
---|---|---|---|
messages | Message[] | Yes | Array of chat messages |
Response Format
Response Status Codes
Status Code | Description |
---|---|
200 | Success - Streaming response initiated |
400 | Bad Request - Invalid model or service |
401 | Unauthorized - Invalid session |
500 | Internal Server Error |
Success Response
The response is a streaming text response containing the AI model's reply.
Response Headers
Header | Value | Description |
---|---|---|
Content-Type | text/event-stream | Indicates streaming response |
Transfer-Encoding | chunked | Indicates chunked transfer |
Error Responses
Invalid Model (400 Bad Request)
{
"statusCode": 400,
"statusMessage": "Invalid model name"
}
Service Unavailable (400 Bad Request)
{
"statusCode": 400,
"statusMessage": "Service not available anymore."
}
Internal Server Error (500)
{
"statusCode": 500,
"statusMessage": "Internal Server Error"
}
TypeScript Interface
import type { Message as BaseMessage } from '@ai-sdk/vue'
interface Message extends BaseMessage {
role: 'user' | 'assistant'
content: string
isStreaming?: boolean
}
interface ChatRequest {
messages: Message[]
}
interface ModelParameters {
max_new_tokens: number
typical_p: number // Can be -1 for some models meaning it is using defaults of the providers
repetition_penalty: number // Can be -1 for some models meaning it is using defaults of the providers
truncate: number
return_full_text: boolean
temperature?: number
}
interface ModelConfiguration {
publisher: string
name: string
description: string
icon: string
type: 'instruct' | 'chat'
configuration: {
model: string
parameters: ModelParameters
}
}
enum AllowedOllamaPublishersEnum {
Ollama = 'ollama'
}
enum AllowedOllamaModelNamesEnum {
RwkvWorld = 'rwkv-6-world'
}
enum AllowedOllamaModelsEnum {
RwkvWorld = 'ollama/rwkv-6-world'
}
type AllowedOllamaModels = `${AllowedOllamaModelsEnum}`
type AllowedOllamaModelPaths = `/api/ai/ollama/${AllowedOllamaModelNamesEnum}/chat`
Python Model
from pydantic import BaseModel, Field
from typing import List, Literal, Optional
from enum import Enum
class Message(BaseModel):
role: Literal['user', 'assistant']
content: str
isStreaming: Optional[bool] = None
class ChatRequest(BaseModel):
messages: List[Message]
class ModelParameters(BaseModel):
max_new_tokens: int
typical_p: float = Field(description="Can be -1 for some models meaning it is using defaults of the providers")
repetition_penalty: float = Field(description="Can be -1 for some models meaning it is using defaults of the providers")
truncate: int
return_full_text: bool
temperature: Optional[float] = None
class ModelConfigurationData(BaseModel):
model: str
parameters: ModelParameters
class ModelConfiguration(BaseModel):
publisher: str
name: str
description: str
icon: str
type: Literal['instruct', 'chat']
configuration: ModelConfigurationData
class AllowedOllamaPublishers(str, Enum):
Ollama = 'ollama'
class AllowedOllamaModelNames(str, Enum):
RwkvWorld = 'rwkv-6-world'
class AllowedOllamaModels(str, Enum):
RwkvWorld = 'ollama/rwkv-6-world'
Code Examples
cURL Example
curl -X POST "https://neptun-webui.vercel.app/api/ai/ollama/rwkv-6-world/chat?chat_id=123" \
-H "Cookie: neptun-session=your-session-cookie" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello, how are you?"}
]
}'
Python Example
import httpx
from pydantic import BaseModel
from typing import List, Literal
import asyncio
class Message(BaseModel):
role: Literal['user', 'assistant']
content: str
class ChatRequest(BaseModel):
messages: List[Message]
async def stream_chat_completion(
session_cookie: str,
chat_id: int,
model_name: str,
messages: List[Message]
) -> None:
async with httpx.AsyncClient() as client:
response = await client.post(
f"https://neptun-webui.vercel.app/api/ai/ollama/{model_name}/chat",
params={"chat_id": chat_id},
cookies={"neptun-session": session_cookie},
headers={
"Content-Type": "application/json"
},
json={"messages": [msg.dict() for msg in messages]},
timeout=None
)
response.raise_for_status()
async for chunk in response.aiter_bytes():
print(chunk.decode(), end="", flush=True)
TypeScript/JavaScript Example
async function streamChatCompletion(
sessionCookie: string,
chatId: number,
modelName: string,
messages: Message[]
): Promise<void> {
const response = await fetch(
`https://neptun-webui.vercel.app/api/ai/ollama/${modelName}/chat?chat_id=${chatId}`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
credentials: 'include', // Important for cookie handling
body: JSON.stringify({ messages }),
}
)
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`)
}
const reader = response.body?.getReader()
if (!reader) {
return
}
while (true) {
const { done, value } = await reader.read()
if (done) {
break
}
// Process the streaming response chunks
console.log(new TextDecoder().decode(value))
}
}
Notes
- The endpoint provides streaming responses
- Authentication is required via the neptun-session cookie
- The chat_id must be a valid integer corresponding to an existing chat
- The response is streamed in chunks as the AI model generates the reply
- Available models through this endpoint:
- RWKV-6-World 1.6B
- Model configurations are handled by Ollama's API